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Basics of Mechanics

Definition

What is mechanics ?
Mechanics is the study of the movement and deformation of physical systems.

A porous solid consists in a solid matrix filled by one or more fluid (gas or liquid). To
consider the mechanics of a porous solid we need to know the mechanics of deformable
solids and the mechanics of fluids and the coupling between both.
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Basics of Mechanics

Simple deformations, elasticity

Cylinder subjected to a force F

The strain (deformation) of the cylinder is defined as: ε = ∆l
l0

The stress applying on the cylinder is defined as σ = F
S

Hooke’s law: ut tensio sic vis
If the stress is moderate, the cylinder is within the elastic domain:

the deformation is linear with the stress σ = Eε, E is called Young Modulus (∼ GPa)

the deformation is reversible
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Simple deformations, elasticity

Cylinder subjected to a force F

The strain (deformation) of the cylinder is defined as: ε = ∆l
l0

The stress applying on the cylinder is defined as σ = F
S

Poisson, bulk moduli
If the stress is moderate, the cylinder is within the elastic domain:

the change of radius is characterized by the Poisson modulus: ∆r
r0

= −ν · ε
for an isotropic deformation (pressure), the volume change is: ∆P = −K ∆V

V
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Basics of Mechanics

Simple deformations, elasticity
Shear

If the force is parallel to the surfaces it is
called shear
The variation of the angle γ (shear angle) is
also linear under the elasticity assumption
τ = Gγ, with G the shear modulus

Relation between the different moduli
G = E

2(1+ν)
1
E = 1

9K + 1
3G

K = 1
3

E
1−2ν

if ν > 0.5 the volume increases under isotropic compression ⇒ Non physical
if ν < 0.5 the volume decreases under compression and increases under traction
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Basics of Mechanics

Usual values of the mechanical moduli for different materials

Material E (GPa) G (GPa) ν K (GPa)
Rubber 0.001 to 0.1 0.0003 0.48 to 0.5 0.0001 to 0.1
Steel 210 77 0.3 160

Sandstone 3 to 90 1 to 40 0.2 to 0.35 2 to 110
Limestone 9 to 80 3 to 30 0.2 to 0.3 5 to 70
Granite 10 to 70 4 to 30 0.1 to 0.2 50
Concrete 20 to 50 21 0.1 to 0.3 15
Cork 0.0186 0.0093 0 0.0062
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Basics of Mechanics

Beyond elasticity, plasticity and rupture
Response of a system under a simple traction test
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Basics of Mechanics

Beyond elasticity, plasticity and rupture

Brittle vs ductile
When the stresses are too large, the system response is not linear anymore

if the system is brittle, it will break when the stress/strain will reach a critical value
if the system is ductile, it will sustain an irreversible deformation before finally
breaking

ductile fracture brittle material
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Basics of Mechanics

Strains and strain tensor
How to describe more complex solicitations and deformations ?

x = X + ξ(X , t)

Small deformation hypothesis
Most of the mechanics is made under this approximation. |∂ξi/∂Xj | � 1
Under this condition, we can define the strain tensor characterizing the change of length
and angle of a material vector:

ε = 1
2
(
∇ξ + ∇tξ

)
εij = 1

2

(
∂ξi
∂xj

+ ∂ξj
∂xi

)
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Basics of Mechanics

Strains and strain tensor
Volumetric strain

εij = 1
2

(
∂ξi
∂xj

+ ∂ξj
∂xi

)
⇒

(
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

)

dΩ
Ω = 3 δl

l = 3ε = tr(ε)

ε =

(
ε 0 0
0 ε 0
0 0 ε

)

The diagonal term εii of the linearized strain tensor corresponds to a volumetric
deformation in the direction ei .
The change in volume is obtained by Ω = (1 + ε) Ω0 with ε = tr(ε)
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Basics of Mechanics

Strains and strain tensor
Deviatoric strain

The non diagonal terms are called deviatoric
These terms correspond to a change of orientation of a material vector.
The strain tensor is symmetric and its eigenvectors determine the principal directions of
deformation

Interpretation of non diagonal terms
2εij is the change of angle undergone by two
initially normal vectors in the directions i
and j.

Decomposition into volumetric and deviatoric strains
ε = ε

31 + e
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Basics of Mechanics

Stresses and stress tensor
Body and surface forces

Body forces and contact forces
Body forces are applied on the whole domain Ω

gravity
electrostatic field

Contact forces are applied on the boundary of
the domain ∂Ω

pressure
shear

Static equilibrium of a domain∫
Ω ρf (x , t) dΩ +

∫
∂Ω T (x , t, ) dA = 0

n normal to the surface, ρ density of the solid
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Basics of Mechanics

Stress vector

Stresses are contact forces

The expression of the stress vector depends on the direction we
are looking at:

σ0 = F
S0

τ0 = 0 and T = σ0e1 + 0× e2

σ1 = F cosα
S1

τ1 = −F sinα
S1

and T = σ1n + τ1t

Florian Osselin MPPS 17 / 38



Basics of Mechanics

Stress vector

Stresses are contact forces

The expression of the stress vector depends on the direction we
are looking at:

σ0 = F
S0

τ0 = 0 and T = σ0e1 + 0× e2

σ1 = F cosα
S1

τ1 = −F sinα
S1

and T = σ1n + τ1t

Florian Osselin MPPS 17 / 38



Basics of Mechanics

Stresses and stress tensor

The contact forces can be expressed as a result of a linear operator in a defined base
T
(
x , t, n = njej

)
= σ · n = σijnje i

This defines the stress tensor

The stress here is analogous to a pressure.
There is a negative sign because the normal
to the face is toward the outside

σ =

(−p 0 0
0 −p 0
0 0 −p

)
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Basics of Mechanics

Stresses and stress tensor

Characteristics of the stress tensor

symetric tensor. The eigenvector define the
principal directions of stress
σii is the stress applying on the surface
normal to ei in the direction ei
A pressure corresponds to a negative value
σij is the shear stress acting in along the ei
on the surface normal to ej

the stress tensor can be decomposed as
spherical part and deviatoric part
σ = s + σ1 with σ = 1/3tr(σ)

For a fluid, the shear stress is equal to zero
and the spherical part reduces to the
pressure with a − sign
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Basics of Mechanics

Terminology of states of stress

Hydrostatic pressure : σ1 = σ2 = σ3
No shear stress on any plane → isotropic pressure
Uniaxial stress :
σ1 > σ2 = σ3 = 0 (uniaxial traction)
σ1 < σ2 = σ3 = 0 (uniaxial compression)
Axial stress with confinement : σ1 > σ2 = σ3 > 0
Pure triaxial stress : σ1 > σ2 > σ3
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Basics of Mechanics

Young relation

We can rewrite the Hooke’s law with the tensor notation
In the basis of the principal directions of stress, we have the relation:(
ε1 0 0
0 ε2 0
0 0 ε3

)
= σ

E

(1 0 0
0 −ν 0
0 0 −ν

)
In the general case, we have : εij = 1

E

[
(1 + ν)σij − νtr

(
σ
)
δij

]

The mechanical equilibrium then writes
∫

Ω ρf dΩ +
∫
∂Ω σ · ndA = 0

Which reduces to ∇ · σ + ρf = 0

Strain work
The infinitesimal work dW supplied between t and t + dt is:
dW =

∫
Ω dξ · ρf dΩ +

∫
∂Ω

(
dξ · T

)
dA

Using the definition of the stress tensor we finally obtain the strain work for infinitesimal
transformation:
dW =

∑
i

∑
j σijdεij which also written as dW = σ : dε

Florian Osselin MPPS 21 / 38



Basics of Mechanics

Young relation

We can rewrite the Hooke’s law with the tensor notation
In the basis of the principal directions of stress, we have the relation:(
ε1 0 0
0 ε2 0
0 0 ε3

)
= σ

E

(1 0 0
0 −ν 0
0 0 −ν

)
In the general case, we have : εij = 1

E

[
(1 + ν)σij − νtr

(
σ
)
δij

]
The mechanical equilibrium then writes

∫
Ω ρf dΩ +

∫
∂Ω σ · ndA = 0

Which reduces to ∇ · σ + ρf = 0

Strain work
The infinitesimal work dW supplied between t and t + dt is:
dW =

∫
Ω dξ · ρf dΩ +

∫
∂Ω

(
dξ · T

)
dA

Using the definition of the stress tensor we finally obtain the strain work for infinitesimal
transformation:
dW =

∑
i

∑
j σijdεij which also written as dW = σ : dε

Florian Osselin MPPS 21 / 38



Basics of Mechanics

Young relation

We can rewrite the Hooke’s law with the tensor notation
In the basis of the principal directions of stress, we have the relation:(
ε1 0 0
0 ε2 0
0 0 ε3

)
= σ

E

(1 0 0
0 −ν 0
0 0 −ν

)
In the general case, we have : εij = 1

E

[
(1 + ν)σij − νtr

(
σ
)
δij

]
The mechanical equilibrium then writes

∫
Ω ρf dΩ +

∫
∂Ω σ · ndA = 0

Which reduces to ∇ · σ + ρf = 0

Strain work
The infinitesimal work dW supplied between t and t + dt is:
dW =

∫
Ω dξ · ρf dΩ +

∫
∂Ω

(
dξ · T

)
dA

Using the definition of the stress tensor we finally obtain the strain work for infinitesimal
transformation:
dW =

∑
i

∑
j σijdεij which also written as dW = σ : dε

Florian Osselin MPPS 21 / 38



Basics of Mechanics

Landslides

Should you really build your house there ?

How can we assess the mechanical equilibrium of a soil ?
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Basics of Mechanics

Mohr circles

Mohr circles is a way to represent the stresses acting on the material point of a system subjected
to a solicitation
It is a 2D representation of the normal and shear stress with every possible orientation of the
cutting plane

Mohr circle for a simple traction test

There is only one principal direction of stress: σ =

(
σ0 0 0
0 0 0
0 0 0

)
{

σ1(α) = F cosα
S1(α) = σ0 cos2 α

τ1(α) = − F sinα
S1(α) = −σ0 cosα sinα ⇒ Parametric equation of a circle
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Basics of Mechanics

Mohr circles
Failure of a sample on a simple traction test

Failure of a ductile material is always due to the shear stress
The maximum shear stress is obtained for an orientation of the plane of 45° from the
solicitation.
The failure will then follow this plane
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Basics of Mechanics

Mohr circles
More complex solicitations

Mohr circles for a biaxial solicitation σ =

(
σ1 0 0
0 σ2 0
0 0 0

)
We choose a cutting plan with an angle α with e1 (e3 is the axis of rotation)
We can consider without any loss of generality that σ1 > σ2

The new normal and tangential components for this plan are:
σn = F1 cosα

S1
+ F2 sinα

S2
= σ1 cos2 α+ σ2 sin2 α

τ = − F1 sinα
S1

+ F2 cosα
S2

= −σ sinα cosα+ σ2 sinα cosα

This corresponds to a circle with parametric equation:
σn = σ1+σ2

2 + σ1−σ2
2 cos(−2α)

τ = σ1−σ2
2 sin (−2α)
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Basics of Mechanics

Mohr circles
More complex solicitations
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Basics of Mechanics

Mohr circles
More complex solicitations

Traxial solicitation: σ =

(
σ1 0 0
0 σ2 0
0 0 σ3

)
A triaxial solicitation can be considered as a superposition of 3 biaxial solicitations with
the rotation of the plane around the 3 principal directions of stress. The result is a
surface.
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Basics of Mechanics

Sign convention in Mohr circles

Mohr circles are usually used in geotechnics: almost all stresses are compression
compression stresses are positive (opposite from the normal case)
The stress tensor is antisymmetric
σ12 = −σ21
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Basics of Mechanics

Failure of soils

Mohr-Coulomb criteron for compression failure
τ = σ tanϕ+ c
⇒ Failure of a granular material: shear of grains with respect to each other ↔ friction
angle ϕ
Criterion increasing with normal stress: consolidation

Failure occurs if a Mohr circle reaches the failure envelope. The failure plane orientation
is given by the contact point between the circle and the envelope
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Basics of Mechanics

Landslides

Should you really build your house there ?

Stability of the soil without house
Vertical stress: σzz = ρgh

Strain tensor: ε =

(0 0 0
0 εyy 0
0 0 εzz

)
⇒

{ 0 = 1
E (σxx − ν (σyy + σzz ))

εyy = 1
E (σyy − ν (σxx + σzz ))

εzz = 1
E (σzz − ν (σxx + σyy ))

Hooke’s law
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Basics of Mechanics

Landslides

Should you really build your house there ?

Static equilibrium

∇ · σ − ρgh = 0⇒


∂σxx
∂x = 0
∂σyy
∂y = 0
∂σzz
∂z = 0

At the cliff, σyy = 0 so ∀y , σyy = 0
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Basics of Mechanics

Landslides

Should you really build your house there ?

Resolution of the system of equations
σxx = νσzz

εyy = ν(1+ν)
R σzz

εzz = 1−ν2
E σzz

⇒ σ =

(
νρgh 0 0
0 0 0
0 0 ρgh

)
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Basics of Mechanics

Landslides

Should you really build your house there ?

Stability of the soil{
ϕ = 40°
c = 40kPa (loam)
ν = 0.2
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Basics of Mechanics

Landslides

Should you really build your house there ?

Influence of the house: σzz = ρgh + P (with Mhouse = 40kPa )
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Basics of Mechanics

Landslides

Should you really build your house there ?

Angle of landslide ?
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Basics of Mechanics

Landslides

Should you really build your house there ?

What of the influence of water in the interstitial space ?
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