Mechanics and Physics of Porous Solids J

Florian Osselin

Based on a lecture from O. Coussy and M. Vandamme

. X TIAL F|
*ﬁa\?///*UNIVERSITY \‘31\{0 ZY((’

fOF WARSAW _( [ |=
L WIWERSYTETWARSZA\\S\(\

Florian Osselin MPPS 1/38



Table of contents

Contents

© Introduction

© Basics of thermodynamics and thermochemistry
© Basics of Mechanics

© The saturated porous solid

© The unsaturated porous solid

@ Confined phase transitions

@ Experimental considerations

Florian Osselin MPPS 2/38



Introduction

Contents

© Introduction

MPPS 3/38



Basics of thermodynamics and thermochemistry

Contents

© Basics of thermodynamics and thermochemistry

MPPS 4/38



Basics of Mechanics

Contents

© Basics of Mechanics

MPPS 5/ 38



Basics of Mechanics

Definition

What is mechanics ? J

Mechanics is the study of the movement and deformation of physical systems.

A porous solid consists in a solid matrix filled by one or more fluid (gas or liquid). To
consider the mechanics of a porous solid we need to know the mechanics of deformable
solids and the mechanics of fluids and the coupling between both.
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Basics of Mechanics

Simple deformations, elasticity

i

N
Cylinder subjected to a force F
[ a The strain (deformation) of the cylinder is defined as: € = %
The stress applying on the cylinder is defined as o = g
N
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Basics of Mechanics

Simple deformations, elasticity

N
Cylinder subjected to a force F
[ a The strain (deformation) of the cylinder is defined as: € = %
The stress applying on the cylinder is defined as o = g
N

Hooke's law: ut tensio sic vis
If the stress is moderate, the cylinder is within the elastic domain:
o the deformation is linear with the stress o = E¢, E is called Young Modulus (~ GPa)

@ the deformation is reversible
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Basics of Mechanics

Simple deformations, elasticity

N
Cylinder subjected to a force F
! al The strain (deformation) of the cylinder is defined as: € = %
The stress applying on the cylinder is defined as o = g
N

Poisson, bulk moduli

If the stress is moderate, the cylinder is within the elastic domain:

@ the change of radius is characterized by the Poisson modulus: %’ =—-v-¢
e for an isotropic deformation (pressure), the volume change is: AP = —K4Y
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Basics of Mechanics

Simple deformations, elasticity

Shear
LI If the force is parallel to the surfaces it is
called shear
The variation of the angle v (shear angle) is
also linear under the elasticity assumption
T 7 = G7, with G the shear modulus

Relation between the different moduli

°
o K=1_E
@ if v > 0.5 the volume increases under isotropic compression = Non physical

if v < 0.5 the volume decreases under compression and increases under traction
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Basics of Mechanics

Usual values of the mechanical moduli for different materials

Material E (GPa) G (GPa) v K (GPa)
Rubber 0.001 to 0.1 0.0003 0.48 to 0.5 0.0001 to 0.1
Steel 210 77 0.3 160
Sandstone 3 to 90 1to40 0.2t00.35 2 to 110
Limestone 9 to 80 3 to 30 0.2t0 0.3 5to 70
Granite 10 to 70 4 to 30 0.1t0 0.2 50
Concrete 20 to 50 21 0.1t0 0.3 15
Cork 0.0186 0.0093 0 0.0062
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Beyond elasticity, plasticity and rupture

Response of a system under a simple traction test

-—
Elastic domain 8
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Response of a system under a simple traction test
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Beyond elasticity, plasticity and rupture

Response of a system under a simple traction test

a—
Residual deformation E
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Beyond elasticity, plasticity and rupture

Response of a system under a simple traction test
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Beyond elasticity, plasticity and rupture

Response of a system under a simple traction test

ultimate .
tensile strength [ === ============-=--nmnmono- o2 Fracture point

—
Elastic domain 5 Failure domain

Perfect plastic domain

-
Work hardening domain
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Brittle vs ductile

Beyond elasticity, plasticity and rupture

When the stresses are too large, the system response is not linear anymore

o if the system is brittle, it will break when the stress/strain will reach a critical value

o if the system is ductile, it will sustain an irreversible deformation before finally

breaking
|
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Basics of Mechanics

Strains and strain tensor

How to describe more complex solicitations and deformations ?

£:K+§(Xat)

)

Initial configuration

Current configuration

Small deformation hypothesis

Most of the mechanics is made under this approximation. |0&;/0X;| < 1

Under this condition, we can define the strain tensor characterizing the change of length
and angle of a material vector:

e=3(VE+vY) =3 (5 +5)
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Basics of Mechanics

Strains and strain tensor

Volumetric strain

o¢ €11 €12 €13
6u=%(%ﬁ+gj)¢ €21 €2 €23
€31 €32 €33
ﬂ dQ __ 28l _ _
3—37—38—17’(2)
|::> <:| e 0 0
e=10 ¢ O
0 0 ¢

I

The diagonal term ¢j; of the linearized strain tensor corresponds to a volumetric

deformation in the direction e;.

The change in volume is obtained by Q = (1 4 €) Qo with € = tr(g)

MPPS
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Basics of Mechanics

Strains and strain tensor

Deviatoric strain

The non diagonal terms are called deviatoric

These terms correspond to a change of orientation of a material vector.

The strain tensor is symmetric and its eigenvectors determine the principal directions of

deformation

Interpretation of non diagonal terms

2¢j; is the change of angle undergone by two
initially normal vectors in the directions i
and j.

Decomposition into volumetric and deviatoric strains

e=3l+e

dx=(1+g;)dX

dX;

€
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Basics of Mechanics

Stresses and stress tensor

Body and surface forces

Body forces and contact forces

Body forces are applied on the whole domain Q
@ gravity
@ electrostatic field

Contact forces are applied on the boundary of
the domain 092

@ pressure

@ shear
v

Static equilibrium of a domain

Jopf(x,)dQ+ [, T(x,t,)dA=0
n normal to the surface, p density of the solid

16 / 38
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Basics of Mechanics

Stress vector

Stresses are contact forces J
A &
: So The expression of the stress vector depends on the direction we
: are looking at:
5 F & F
------------ Y IS 0’025—0 To:OandI:aog—i—OXg
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Basics of Mechanics

Stress vector

Stresses are contact forces J
A&
: So The expression of the stress vector depends on the direction we
: are looking at:
s i 5
------------ [P e 0’0:5—’; To:OandI:aoﬂ—i—OXg

or=FEge =M and T =oin+nt J
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Basics of Mechanics

Stresses and stress tensor

The contact forces can be expressed as a result of a linear operator in a defined base

T(x,t,n=nie) =g -n=oyne;

This defines the stress tensor

The stress here is analogous to a pressure.

There is a negative sign because the normal
. to the face is toward the outside
—p O 0

=0 —-p O
0 0 —p
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Basics of Mechanics

Stresses and stress tensor

Characteristics of the stress tensor
€3
@ symetric tensor. The eigenvector define the

T(es) principal directions of stress
e.
2 @ ojj is the stress applying on the surface
e 5 normal to e; in the direction e;

O3 = A pressure corresponds to a negative value

O3z @ oy is the shear stress acting in along the e;

T(e2)
on T 2 on the surface normal to g
a 02 @ the stress tensor can be decomposed as
o O21

O12 spherical part and deviatoric part
g =5+ ol with o = 1/3tr(g)

@ For a fluid, the shear stress is equal to zero
and the spherical part reduces to the
pressure with a — sign
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Basics of Mechanics

Terminology of states of stress

@ Hydrostatic pressure : 01 = 02 = 03

No shear stress on any plane — isotropic pressure
@ Uniaxial stress :

o1 > o2 = 03 = 0 (uniaxial traction)

01 < 02 = 03 = 0 (uniaxial compression)

@ Axial stress with confinement : o1 > 02 =03 >0

o Pure triaxial stress : o1 > 02 > 03
v
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Basics of Mechanics

Young relation

We can rewrite the Hooke's law with the tensor notation

In the basis of the principal directions of stress, we have the relation:

e2 0 O 1 0 0
0 &2 0)=%10 —v O
0 0 e3 0 0 -—v

In the general case, we have : ¢; = £ [(1 +v)oj — vtr (g) 5,;]
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Basics of Mechanics

Young relation

We can rewrite the Hooke's law with the tensor notation

In the basis of the principal directions of stress, we have the relation:

e2 0 O 1 0 0
0 &2 0)=%10 —v O
0 0 e3 0 0 -—v

In the general case, we have : ¢; = £ [(1 +v)oj — vtr (g) 5,;]

The mechanical equilibrium then writes fQ pfdQ + fmg -ndA=0
Which reduces to V- g + pf =0

Strain work

The infinitesimal work dW supplied between t and t + dt is:
dw = fQ d§ - pfdQ + faQ (d§ ) I) dA

Using the definition of the stress tensor we finally obtain the strain work for infinitesimal
transformation:

dw =", Zj ojjdej; which also written as dW =g : de
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Basics of Mechanics

Landslides
Should you really build your house there ? J
How can we assess the mechanical equilibrium of a soil ? J
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Basics of Mechanics

Mohr circles

Mohr circles is a way to represent the stresses acting on the material point of a system subjected
to a solicitation

It is a 2D representation of the normal and shear stress with every possible orientation of the
cutting plane

Mohr circle for a simple traction test

oo 0 O
There is only one principal direction of stress: o= 0 0 0
- 0 0 O
F cos o 2
Ul(a) = = 0Q COS“ «x . . )
5}:(3.2,1 . = Parametric equation of a circle
Tl(CY) B ~Si(a) = —opcosasin o
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Basics of Mechanics

Mohr circles

Failure of a sample on a simple traction test

\
Ty

Failure of a ductile material is always due to the shear stress
The maximum shear stress is obtained for an orientation of the plane of 45° from the

solicitation.
The failure will then follow this plane

24/ 38
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Basics of Mechanics

Mohr circles

More complex solicitations

cp 0 O
Mohr circles for a biaxial solicitation ¢ = 0 o O
- 0 0 0

We choose a cutting plan with an angle a with e; (e3 is the axis of rotation)
We can consider without any loss of generality that o1 > 02

w
The new normal and tangential components for this plan are:
Fq cos o F> sin o 2 .2
op = 1= + 2= =o01cosca+ opsint o
n Fsl. . S, 1 + o2
T = —%1"0‘ + %250‘ = —0osinacosa + o5 sin o cos o
v
This corresponds to a circle with parametric equation:
on = 7"142“72 + T35 cos(—2a)
— 01702
T = H5%2 sin (—2a) )
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Basics of Mechanics

Mohr circles

More complex solicitations
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Basics of Mechanics

Mohr circles

More complex solicitations

g1 0 0
Traxial solicitation: a= 0 oo O
O 0 g3

A triaxial solicitation can be considered as a superposition of 3 biaxial solicitations with
the rotation of the plane around the 3 principal directions of stress. The result is a
surface.

T
A
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Basics of Mechanics

Sign convention in Mohr circles

Mohr circles are usually used in geotechnics: almost all stresses are compression
@ compression stresses are positive (opposite from the normal case)

@ The stress tensor is antisymmetric

012 = —021
— T
-~ -
/7Y A N
} }
\\ —I \\ —,
_— -,
Counterclockwise = positive Clockwise = negative
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Basics of Mechanics

Failure of soils

Mohr-Coulomb criteron for compression failure
T=octanp + ¢
= Failure of a granular material: shear of grains with respect to each other < friction

angle ¢
Criterion increasing with normal stress: consolidation

Failure occurs if a Mohr circle reaches the failure envelope. The failure plane orientation
is given by the contact point between the circle and the envelope
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Landslides

Should you really build your house there ? J

Stability of the soil without house

Vertical stress: 0,, = pgh

0 0 O 0=1
Strain tensor: ¢ = (0 ¢, O | =4 &, =

0 0 Ez Ezz =

—~

O =V (0yy + 022))
(Uyy - V(Uxx + Uzz)) Hooke's law
(022 — v (00 + 0)y))

m|—=m|—
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Landslides

Should you really build your house there ? J

Static equilibrium

Ao
xxfo
Ix
V.g—pgh=0= Zg—y:o At the cliff, 7,y = 0 so Yy, 0, =0
Ozz 0
Oz
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Landslides

Should you really build your house there ? J

Resolution of the system of equations

Oxx = VOzz Vpgh 0 0
Eyy = %Uzz = ag= 0 0 0
e = 0, 0 0 pgh
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Landslides

Should you really build your house there ? J

Stability of the soil

= 40°
¢ = 40kPa (loam)

v=202
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Landslides

Should you really build your house there ?
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Influence of the house: 0., = pgh + P (with Mpouse = 40kPa )
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Landslides

Should you really build your house there ?
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Landslides

Should you really build your house there ?
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The saturated porous solid
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Contents

© The unsaturated porous solid

Florian Osselin MPPS 36 /38



Confined phase transitions
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